Hypergraphs, Entropy, and Inequalities
نویسنده
چکیده
1. INTRODUCTION. Hypergraphs. Information Theory. Cauchy-Schwarz. It seems reasonable to assume that most mathematicians would be puzzled to find these three terms as, say, key words for the same mathematical paper. (Just in case this puzzlement is a result of being unfamiliar with the term " hypergraph " : a hypergraph is nothing other than a family of sets, and will be defined formally later.) To further pique the curiosity of the reader we consider a simple " triangle inequality " that we will later associate with a very simple (hyper)graph—namely, the triangle K 3. Let X , Y , and Z be three independent probability spaces, and let
منابع مشابه
A note on inequalities for Tsallis relative operator entropy
In this short note, we present some inequalities for relative operator entropy which are generalizations of some results obtained by Zou [Operator inequalities associated with Tsallis relative operator entropy, {em Math. Inequal. Appl.} {18} (2015), no. 2, 401--406]. Meanwhile, we also show some new lower and upper bounds for relative operator entropy and Tsallis relative o...
متن کاملEntropy Splitting Hypergraphs
Hypergraph entropy is an information theoretic functional on a hypergraph with a probability distribution on its vertex set. It is sub-additive with respect to the union of hypergraphs. In case of simple graphs, exact additivity for the entropy of a graph and its complement with respect to every probability distribution on the vertex set gives a characterization of perfect graphs. Here we inves...
متن کاملSubmodular Hypergraphs: p-Laplacians, Cheeger Inequalities and Spectral Clustering
We introduce submodular hypergraphs, a family of hypergraphs that have different submodular weights associated with different cuts of hyperedges. Submodular hypergraphs arise in clustering applications in which higher-order structures carry relevant information. For such hypergraphs, we define the notion of p-Laplacians and derive corresponding nodal domain theorems and k-way Cheeger inequaliti...
متن کاملA class of inequalities relating degrees of adjacent nodes to the average degree in edge-weighted uniform hypergraphs
In 1986, Johnson and Perry proved a class of inequalities for uniform hypergraphs which included the following: for any such hypergraph, the geometric mean over the hyperedges of the geometric means of the degrees of the nodes on the hyperedge is no less than the average degree in the hypergraph, with equality only if the hypergraph is regular. Here, we prove a wider class of inequalities in a ...
متن کاملInequalities of Ando's Type for $n$-convex Functions
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American Mathematical Monthly
دوره 111 شماره
صفحات -
تاریخ انتشار 2004